Guide to the Science Area
For History and Science Concentrators
Science and Society Track
2018-2019

Department of the History of Science

This guide provides ideas for designing your own program of study as a concentrator in History and Science. There are two ways to concentrate in History and Science. You may choose our History of Science track, which does not require a science area. Alternatively, you may pursue our Science and Society track, which allows you to combine the study of a specific science with coursework in history of science and its allied disciplines. This document is specifically for students choosing our Science and Society track and is designed to guide you in your choice of science courses for the concentration.

Some of the courses mentioned in this document may no longer be in the catalog; other new courses are added every year. Remember that you can count no more than two introductory courses toward concentration credit in the science area. Introductory courses are normally considered to be courses that do not have a college-level prerequisite, and we have noted them with an asterisk.

This list does not define the requirements for the honors-eligible Focus in Medicine and Society or the Focus in Mind, Brain, and Behavior within the Science and Society track. Please refer to the study guide for each focus.

Students should submit a list of proposed courses for the science area on the Courses in Concentration Form, which must then be approved by the Manager of Student Programs or the Director of Undergraduate Studies. It is also important that students review their Courses in Concentration form at least once a year and update it whenever there is a change in the list of courses actually being taken for credit in the concentration.

Common Science Areas

Astronomy and Astrophysics
Chemistry
Computer Science
Earth and Planetary Sciences/Environmental Sciences
Engineering Sciences
Human Evolutionary Biology
Life Sciences
Mathematics

Molecular and Cellular Biology
Organismic and Evolutionary Biology
Physics
Psychology
Statistics
Stem Cell and Regenerative Biology
PLEASE NOTE – THIS LIST IS NOT EXHAUSTIVE OR DEFINITIVE

SCIENCE AREAS

Astronomy and Astrophysics
Astronomy Courses numbered 100 and above
Astronomy 2. Celestial Navigation
Astronomy 5. Astrosociology
Astronomy 16. Stellar and Planetary Astronomy
Astronomy 17. Galactic and Extragalactic Astronomy

Chemistry
The Chemistry 17/27 sequence is intended primarily for students in the life sciences; the 20/30 sequence is intended primarily for Chemistry concentrators and other students concentrating in the physical sciences. Either sequence satisfies the organic chemistry requirement for medical school.

A common chemistry area sequence for History and Science concentrators which satisfies the general chemistry and organic chemistry requirement for medical school is:
*Life Sciences 1a. An Integrated Introduction to the Life Sciences: Chemistry, Molecular Biology, and Cell Biology
*Physical Sciences 1. Chemical Bonding, Energy, and Reactivity: An Introduction to the Physical Sciences
Chemistry 17. Principles of Organic Chemistry
Chemistry 27. Organic Chemistry of Life

Other sequences can include:
Chemistry and Chemical Biology Department Courses numbered 100 and above
*Life and Physical Sciences A. Foundational Chemistry and Biology
*Life Sciences 1b. An Integrated Introduction to the Life Sciences: Genetics, Genomics, and Evolution
Physical Sciences 2. Mechanics, Elasticity, Fluids, and Diffusion
Physical Sciences 3. Electromagnetism, Waves, Imaging, and Information
Physical Sciences 10. Quantum and Statistical Foundations of Chemistry
Physical Sciences 11. Foundations and Frontiers of Modern Chemistry: A Molecular and Global Perspective
Chemistry 20. Organic Chemistry
Chemistry 30. Organic Chemistry
Chemistry 40. Inorganic Chemistry
Chemistry 60. Foundations of Physical Chemistry

The general chemistry requirement for medical students can be satisfied with any two of the following courses: Life and Physical Sciences A, Life Sciences 1a, Physical Sciences 1, Physical Sciences 10, or Physical Sciences 11. NOTE: Physical Sciences 1 and Physical Sciences 11 cannot both be taken for credit.
PLEASE NOTE – THIS LIST IS NOT EXHAUSTIVE OR DEFINITIVE

Computer Science

Computer Science Courses numbered 100 and above
*Computer Science 1. Great Ideas in Computer Science
*Computer Science 50. Introduction to Computer Science I
Computer Science 51. Abstraction and Design in Computation (formerly Introduction to Computer Science II)
Computer Science 61. Systems Programming and Machine Organization

Earth and Planetary Sciences/Environmental Sciences

Earth and Planetary Sciences courses numbered 100 and above
E-PSCI 10. A Brief History of the Earth
E-PSCI 50. The Fluid Earth: Oceans, Atmosphere, Climate, and Environment
E-PSCI 51. Introduction to Planetary Materials and Earth Resources
E-PSCI 52: Global Geophysics: A Primer
E-PSCI 53: Marine Geochemistry
SPU 12. Natural Disasters
SPU 14. How to Build a Habitable Planet
SPU 29. The Climate-Energy Challenge
SPU 31. Energy Resources and the Environment
Astronomy 16. Stellar and Planetary Astronomy
Engineering Sciences 120. Introduction to the Mechanics of Solids
Engineering Sciences 123. Introduction to Fluid Mechanics and Transport Processes
Engineering Sciences 164. Environmental Chemistry

Engineering Sciences

Engineering Sciences courses numbered 100 and above
Engineering Sciences 20. How to Create Things and Have Them Matter
Engineering Sciences 21. The Innovator’s Practice: Finding, Building and Leading Good Ideas with Others
Engineering Sciences 22. Design Survivor: Experiential Lessons in Designing for Desirability
Engineering Sciences 24. Flavor Molecules of Food Fermentation: Exploration and Inquiry
Engineering Sciences 25. Engineering the Acoustical World
Engineering Sciences 28. Technology, Ethics, and Society
Engineering Sciences 29. Introduction to Computational Design
*Engineering Sciences 50. Introduction to Electrical Engineering
Engineering Sciences 53. Quantitative Physiology as a Basis for Bioengineering
Engineering Sciences 54. Electronics for Engineers
**Human Evolutionary Biology**
*HEB Courses numbered 1200 and above*
*Life and Physical Sciences A. Foundational Chemistry and Biology*
*Life Sciences 1a. An Integrated Introduction to the Life Sciences: Chemistry, Molecular Biology, and Cell Biology*
*Life Sciences 1b. An Integrated Introduction to the Life Sciences: Genetics, Genomics, and Evolution*
Life Sciences 2. Evolutionary Human Physiology and Anatomy
*OEB 10. Foundations of Biological Diversity*

**Life Sciences**
*Life and Physical Sciences A. Foundational Chemistry and Biology*
*Life Sciences 1a. An Integrated Introduction to the Life Sciences: Chemistry, Molecular Biology, and Cell Biology*
*Life Sciences 1b. An Integrated Introduction to the Life Sciences: Genetics, Genomics, and Evolution*
Life Sciences 2. Evolutionary Human Physiology and Anatomy
Life Sciences 50ab. Integrated Science
Life Sciences 100. Experimental Research in the Life Sciences
SCRB 60. Ethics, Biotechnology, and the Future of Human Nature

**Mathematics**
*Applied Mathematics Department courses numbered 100 and above*
*Mathematics Department courses numbered 100 and above*
**Statistics Department courses numbered 110 and above**
*Mathematics Ma. Introduction to Functions and Calculus I*
*Mathematics Mb. Introduction to Functions and Calculus II*
*Mathematics 1a. Introduction to Calculus*
Mathematics 1b. Calculus, Series, and Differential Equations
Mathematics 18. Multivariable Calculus for Social Sciences
Mathematics 19a. Modeling and Differential Equations for the Life Sciences
Mathematics 19b. Linear Algebra, Probability, and Statistics for the Life Sciences
Mathematics 21a. Multivariable Calculus
Mathematics 21b. Linear Algebra and Differential Equations
Mathematics 22a. Vector Calculus and Linear Algebra I
Mathematics 22b. Vector Calculus and Linear Algebra II
Mathematics 23a. Linear Algebra and Real Analysis I
Mathematics 23b. Linear Algebra and Real Analysis II
Mathematics 23c. Mathematics for Computation, Statistics, and Data Science
Mathematics 25a. Theoretical Linear Algebra and Real Analysis I
Mathematics 25b. Theoretical Linear Algebra and Real Analysis II
Mathematics 55a. Studies in Algebra and Group Theory
Mathematics 55b. Honors Real and Complex Analysis
Molecular and Cellular Biology
Molecular and Cellular Biology Department courses numbered 100 and above
*Life and Physical Sciences A. Foundational Chemistry and Biology
*Life Sciences 1a. An Integrated Introduction to the Life Sciences: Chemistry, Molecular Biology, and Cell Biology
*Life Sciences 1b. An Integrated Introduction to the Life Sciences: Genetics, Genomics, and Evolution
Life Sciences 50A. Integrated Science
Life Sciences 50B. Integrated Science
Life Sciences 100. Experimental Research in the Life Sciences
MCB 60. Cellular Biology and Molecular Medicine
MCB 63. Biochemistry and Molecular Medicine
MCB 64. Cell Biology in the World
MCB 65. Physical Biochemistry: Understanding Macromolecular Machines
MCB 68. Cell Biology Through the Microscope
*MCB 80. Neurobiology of Behavior

Organismic and Evolutionary Biology
Organismic and Evolutionary Biology Department courses numbered 100 and above
*Life Sciences 1b. An Integrated Introduction to the Life Sciences: Genetics, Genomics, and Evolution
Life Sciences 2. Evolutionary Human Physiology and Anatomy
*OEB 10. Foundations of Biological Diversity
OEB 50. Genetics and Genomics
OEB 51. Biology and Evolution of Invertebrate Animals
OEB 52. Biology of Plants
OEB 53. Evolutionary Biology
OEB 54. Biology of the Fungi
OEB 55. Ecology: Populations, Communities, and Ecosystems
OEB 56. Geobiology and the History of Life
OEB 57. Animal Behavior
OEB 58. How to Build an Animal
OEB 59. Plants and Human Affairs

Physics
Physics Department Courses numbered 100 and above
Physical Sciences 2. Mechanics, Elasticity, Fluids, and Diffusion
Physical Sciences 3. Electromagnetism, Waves, Imaging, and Information
Physical Sciences 12a. Mechanics from an Analytic, Numerical, and Experimental Perspective
Physical Sciences 12b. Electromagnetism and Statistical Physics from an Analytic, Numerical, and Experimental Perspective
*Physics 15a. Introductory Mechanics and Relativity
*Physics 15b. Introductory Electromagnetism
Physics 15c. Wave Phenomena
Physics 16. Mechanics and Special Relativity
Applied Physics 50b. Physics as a Foundation for Science and Engineering, Part II
Applied Physics 195. Introduction to Solid State Physics
Astronomy 191. Astrophysics Laboratory
Chemistry 160. The Quantum World
Chemistry 161. Statistical Thermodynamics
Chemistry 163. Frontiers in Biophysics
Chemistry 165. Experimental Physical Chemistry
Earth and Planetary Sciences 131. Introduction to Physical Oceanography and Climate
Engineering Sciences 120. Introduction to the Mechanics of Solids
Engineering Sciences 123. Introduction to Fluid Mechanics and Transport Processes
Engineering Sciences 154. Electronic Devices and Circuits
Engineering Sciences 173. Electronic and Photonic Devices
Engineering Sciences 181. Engineering Thermodynamics
Engineering Sciences 190. Introduction to Materials Science and Engineering

(Note: If you take Physics 15a, b, and c, you may count the combination of Math 21a and Math 21b for a fourth physics course)

**Psychology**
The science area in Psychology must include Science of Living Systems 20. Psychological Science. It is recommended that students who plan to do advanced work in a laboratory setting also enroll in either Psychology 1900 or Statistics 100, 101, or 102. These courses count as introductory courses.

**Required Course for All Areas:**


The remaining three courses should be chosen from ONE of the following sub-fields. It is recommended that students choose to take the first course listed in each section, since those courses (Psychology 14, 15, 16, and 18) act as a prerequisite for many of the other courses in each respective section.

**Cognitive Psychology**

Psychology 14. Cognitive Neuroscience
Psychology 1201. Your Brain on Drugs: Psychopharmacology
Psychology 1303. The Human Brain Then and Now
Psychology 1304. Brain Damage as a Window in the Mind: Cognitive Neuropsychology
Psychology 1305. Evolution and Cognition
Psychology 1352. Foundations of Cognitive Neuroscience Research
Psychology 1355. The Adolescent Brain
Psychology 1456. The Clever Human Brain: How We Control the Flow of Information and Make Good Decisions
Social Psychology
- Psychology 15. Social Psychology
- Psychology 1502. Cultural Psychology: Diverse Identities in the U.S. and Beyond
- Psychology 1503. Psychology of Close Relationships
- Psychology 1516. The Psychology of Leadership and Influence: How People Lead and Communicate with Impact
- Psychology 1517. Psychology of Diversity and Prejudice
- Psychology 1556r. Research Seminar in Implicit Social Cognition

Developmental Psychology
- Psychology 15. Social Psychology
- Psychology 16. Developmental Psychology: Psychology of Early Childhood
- Psychology 1609. Becoming an adult: Exploring Emerging Adulthood as a distinct developmental stage
- Psychology 1621: It Takes a Village: Child Development and Social Policy
- Psychology 1651r. Language Development: Undergraduate Laboratory Course: Research Seminar
- Psychology 1652r. Laboratory in Early Cognitive Development
- Psychology 1654. Topics in Cognitive Development: Seminar
- Psychology 1655r. Conceptual Development: Undergraduate Laboratory Course

Psychopathology
- Psychology 18. Abnormal Psychology
- Psychology 1801. Anxiety Disorders
- Psychology 1853. Self-Destructive Behaviors
- Psychology 1855. Mood Disorders
- Psychology 1857. Psychotherapy: Science and Practice
- Psychology 1858. Stress, Coping, and Resilience
- Psychology 1861. Developmental Psychopathology

Statistics
Statistics Department courses numbered 110 and above
*Statistics 100. Introduction to Quantitative Methods for the Social Sciences and Humanities
*Statistics 102. Introduction to Quantitative Methods for Life Sciences
*Statistics 104. Introduction to Quantitative Methods for Economics

Stem Cell and Regenerative Biology
Stem Cell and Regenerative Biology Department courses numbered 100 and above
- SCRB 10. Human Developmental and Regenerative Biology
- SCRB 60. Ethics, Biotechnology, and the Future of Human Nature
- SCRB 91r. Introduction to Research