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CHAPTER 3 

PROJECTILE MOTION 

Turning now to the more general motion of projectiles, we leave 
the relatively simple case of movements along a straight line only 
and expand our methods to deal with motion in a. plane. Our whole 
understanding of this field, a typical and historically important one, 
will hinge on a far-reaching discovery: The observed motion of a 
projectile may be thought of as the result of two sepata.te motions, 
combined and folluwed simnlta,neously by the projectile, the one com
ponent of motion being an unchanging, unaccelerated horizontal 
translation, the other component being a vertical, accelerating motion 
obeying the laws of free fall. Furthermore, these two components 
do not impede or interfere with each other; on the contrary, the 
resultant at any moment is the simple effect of a superposition of the 
two individual components. 

Again it \Vas Galileo who perfected this subject, in the section 
"The Fourth Day" immediately following the excerpts from the Two 
New Sciences which were presented in our last chapter. Let us re
fashion his original arguments to yield somewhat more general con
clusions, and to illustrate by one painstaking and searching inquiry 
how an understanding of a complex problem may grow. In later 
chapters it will usually be necessary that you supply some of the 
intermediate steps of a problem, therefore this effort now will be a 
good investment. Thus, if Chapter 2 represented a historically 
inclined chapter, this one may be called a factually directed one. 

3-1 Projectile with initial horizontal motion. ·we may start with 
two simple but perhaps surpris
ing experiments. 

(a) If we watch a plane in 
steady horizontal flight drop a 
small, heavy parcel, we realize 
that (except for air friction) the 
parcel remains directly below the 
plane while, of course, dropping 
closer and closer to the ground. 
This is represented in Fig. 3-1. 
If we watched this event from a 

36 

FIG. 3-1. Successive positions of a 
parcel dropped from a plane 
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balloon, from very high up and directly above this region, we should, 
of course, see only the horizontal part (component) of the motion; 
and if from there we now could see the parcel at all, we should think 
it traveled directly along with the plane, instead of falling away 
from it. The clear implication is that the horizontal component of 
the motion of the parcel remains what it was at the moment of re
lease from the plane (unchanged, as suggested by the law of inertia), 
even though there is superposed on it the other, ever-increasing com
ponent of vertical velocity. 

(b) In the second experiment we shall place two similar small 
spheres at the edge of a table (c.f. Fig. 3-2). At the very moment 
that one is given a strong horizontal push, so that it flies off rap
idly and makes a wide, curved trajectory,* the other is touched 
only very gently and therefore 
drops straight clown to the floor. 
Which will land first? 

The experimental fact is that 
they both land together, no mat
ter what the initial horizontal 
speed of the pushed ball; further
more, the balls remain at equal 
levels throughout their fall, 

Fra. 3-2. The horizontal ami ver
tical components of motion are inde
pendent. 

though of course they separate in the horizontal dimension, one 
having a large (and by the previous experiment, presumably un
climinishing) horizontal velocity and the other having none. The 
conclusion here is that the vertical component of the motion is quite 
independent of any additional horizontal movement. 

The joint result of both experiments is that motion in a plane 
can be resolved into two components, the horizontal and vertical, 
and in the case of projectiles (parcel, spheres, etc.) moving near the 
earth, these two components of motion are independent. This allows 
us to answer some inquiries into the motion of our projectiles, the 
simplest being "How far away from the starting point does the parcel 
or the second sphere land?" During the time taken for the fall or 
flight, say t seconds, the horizontal, unchanging component of mo
tion will transport the projectile a distance equal to the initial velocity 
imparted in the forward direction at the moment of release multiplied 
by the time t; simultaneously the growing vertical component of mo
tion contributes a downward displacement by an amount correspond
ing to the distance of free fall during that time t under the influence 

*By trajectory we mean here the path followed by a projectile under 
h . . ,v 
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of the gravitational acceleration, g. If we agree to give the sub
script x to all horizontal components, and y to all vertical compo
nents, as indicated in Fig. 3-3, then we may rewrite the previous 
sentence more concisely: Point of release, 

Y ((where speed = Vox). 
Sx = Voxi or Sx = Vxt, (3-1) +X Bx 

because Vox = Vx, the horizontal 
motion being by assumption un
accelerated; and secondly, 

because Vou was here assumed to 
be zero, the initial motion at the 

Sy 

time of release having been alto- FIG. 3-3. Trajectory and total 
gether in the horizontal direction. displacement of a projectile. 

If t is the actual total time of flight, Sx so calculated is the so
called "range" of the projectile and Su is the distance of drop, but 
our question above inquired about neither s, nor Sy. If we still wish 
to find the total displacement from the starting point (a quantity 
we might calls), a glance at Fig. 3-3 will at once solve our problem. 
By the Pythagorean theorem, for displacement in a plane, 

s = V s~ + s~ . (3-3) 

We may now substitute, and find that s = V (voxt) 2 + (! gt2 ) 2• In 
order to produce a numerical answer, we must therefore be given 
the initial velocity and time of flight, quite apart from the value 
of g, which in all our work will be assumed to be numerically equal to 
980 cm/sec2 or 32.2 ft/sec2

• 

Furtherm.Jre, the angle which direction s makes with the hori
zontal, {J, is clearly given* by tan fJ = su/ sx. It is at this angle that 
a "sight" will have to be set to ascertain the proper instant of release 
of this projectile from the plane. It would be a more difficult prob
lem, and one which we shall not try to solve, to discover not the 
total displacement but the length of the actual path along the curved 
trajectory. It happens to be a fairly unimportant question to us, 
the range s, and the distance Sy being the more sought-after quanti
ties; yet we may deduce an interesting result about the shape of the 
path. From Eqs. (3-1) and (3-2), 

s, = VoJ, :. t = ~ 
Vox 

and 

* /3PR Annendix V for a summary of trigonometric relations. 
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But 

Sy 

which may be written 

Since the quantities in paren
theses are constant throughout a 
particular projectile motion, it 
appears that Su o:: s;. This, how
ever, in analytic notation, is the 
property of a simple parabola 
(Fig. 3-4). 

FIG. 3-4. Complete graph of the 
equation y (a constant)· x2• For 
the present we shall refer only to the 
right limb of the lower parabola (heavy 
line). 

PROBLEM 3-1. Plot on graph paper the equation y ( -t)x2• (a) Give 
x only + values; (b) give x both + and values. Recall the useful con· 
vention that to distances above the origin or to the right of the origin, 
+ signs are assigned; for distances below or to the left of the origin, -

After Galileo had deduced the parabolic nature of the trajectory 
(by an original and similar argument), projeetile motion immediately 
became much simpler to understand; for the geometrical properties 
of the parabola had long been established by the mathematicians in 
their disinterested pursuit of abstract geometrical worlds. We find 
here a first clue to thTee important facts of life in science: ( 1) If we 
can express phenomena quantitatively and cast the relation between 
observables into equation form, then we can grasp the phenomenon 
at one glance, manipulate it by the laws of mathematics, and so open 
the way to the discovery of new truths concerning this phenomenon. 
For example, having found that our trajectories are parabolic, we 
would confidently calculate, if required, the length of the actual path 
along the curve by means of some formula proposed to us by a 
mathematician, one 1vho may never even have seen an actual pro
jectile motion, but who has studied parabolas thoroughly. (2) Con· 
sequently there is always an imperative need for a. well-developed 
system of pure mathematics from which the physicist may draw. 
(3) VYe can see why the physical seientist always tries to cast hir 
problem into such a form that established approaches, procedures, 
or tricks from another branch of scienee or from mathematics will 
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Fro. 3-5. The actual velocity v can be compounded from its components Vr

aud v0 • 

aid in the solution. As an example of the last point, just as Galileo 
:1pplied the mathematics of parabolas to actual projectile motions, 
so does the modern acoustical engineer solve his problems by means 
of the mathematical schemes developed quite independently by elec
trical engineers for their own very complex field. Whatever the 
methods of science may be, they have shown themseives to be trans
ferable from one specialty to the other in a remarkable and fruitful 
way. 

Yet another question to be asked about our projectile motion is 
this: What is the actual velocity of the moving object at some time t 
after release? 'vVe may be prompted by our initial two experiments 
and by the discussion leading to Eq. (3-3) to represent the two ob
served components of the actual velocity at several portions along 
the path, as has been done in Fig. 3-5(a). At each of the three se
lected points the horizontal velocity component Vo, = v, = constant, 
but the vertical component grows linearly from Vov = 0 to a larger 
and larger value, in accordance with the law for falling bodies, 
v11 = Vov + gt, which here becomes simply v11 gt. Our experiments 
showed us that v, and v11 1v:ill not disturb each other, but this does 
not tell us yet what is the actual velocity v at any chosen point on 
the trajectory. Now it was Galileo's very important discovery that 
the total effect of both velocity components, i.e., the actual velocity v, 
could be compounded from the two components v, and v11 by the 
very same simple scheme ~which enabled us to find 8 when 8., and 8 11 

were known. In Fig. 3-5(b), the velocity at point Cis constructed 
by completing the parallelogram (in this case simply a rectangle, 
since Vx and v11 are at 90°) formed by the arrows corresponding to 
v, and v11 ; the total, the "real" velocity, is then indicated by the 
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diagonal v, which at every point is tangent to the momentary path 
of the projectile, and which has the value 

V= (3-5) 

Consequently, the momentary direction of motion at point C can be 
specified in terms of the angle 'Y betvveen v a,nd the horizontal direc
tion, and is given by 

tan 'Y (3-6) 

This, to repeat, is a postulate that is checked by expm·iment. We 
may cast it into formal language: the instantaneous velocity of a 
projectile, and its direction of motion at any instant, may be obtained 
by superposing the two independent cmn]Wnents v, and v11 in a simple 
]Xtmllelogmm constnLction, where v, the resultant, is given in both 
direction and magnitude by the diagonal, as shown in Fig. 3-5(b). 

This principle of the supeTposition of velocity components is so sim
ple as to seem now self-evident, but that is deceptive. The only 
justification for postulating the crucial equations (3-5) and (3-6) is 
that they are essentially experimentally confirmed discoveries. In 
one fonn or another the superposition principles are such simplifying 
devices that they may seem to have been too much to hope for; yet 
natural phenomena graciously do exhibit such features at times, and 
it is practically unthinkable that physics could have embarked on its 
great journey of vigorous discovery from Galileo on without his hav
ing intuited many such "simple" fundamentals. 

Exmnple 1. A stone is dropped from a plan€ flying level with the ground 
at a speed of 200 ft/sec. If the stone needs 5 seconds to reach the ground, 
how high did the plane fly, what is the range of this projectile, what is its 
total displacement, and what is its final speed just before striking? As we 
now translate phrase by phrase, we write: Vou = 0, Vox = 200 ftjsec, t 5 
sec, Sv '? s., ? s = ? v = ? We must assume that g = 32.2 ft/sec2 

(often, 32 ft/sec2 will be accurate enough), and that air friction is so small 
on the projectile that its horizontal motion is not affected and its vertical 
motion remains uniformly accelerated. Both of these assumptions are, 
incidentally, experimentally found to hold quite well for the first few seeoncls 
of motion, but inereasingly less well thereafter. 

For a solution we find Sv ~ gt2 = 400 ft; s., v0,t 1000 ft, s = 

v 4002 + 10002 ft, and so forth. 
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3-2 Introduction to vectors. The foregoing discussion has ex
hausted every worthwhile question >Ye may put at present about 
projectile motion, 11roviclecl the '/notion sta:rted with a stmight horizontal 
velocity and no vertical component of velocity at all. Now we shall 
go on to the general case, i.e., to projectile motion with all conceiv
able initial conditions of velocity, not neglecting projectiles shot from 
a b'LUl pointing at any angle above or below the horizontal line. Our 
interest here is not so much a practical one---those aspects of science 
which men abuse to direct weapons against one another are surely 
the most dismal. Instead, we shall regard this exposition as a typi
cal formulation of a large and successful general schmne to handle all 
possible specific instances of a problem. Furthermore, in this lengthy 
effort we shall of necessity have to develop or invent some new 
physical concepts of permanent usefulness. 

Imagine now the progress of a projectile which leaves the muzzle 
o£ a gun with an initial velocity vo and at an angle 0 with the hori
zontaJ [Fig. 3-6(a)], rises to some height h, and then drops into a 
valley belmv the horizon. The horizontal and vertical components 
of the initial velocity, Vox and v0YJ can be computed by resolution 
from Vo and the angle 0, by means of the same trigonometric approach 
which led us to the converse proportion, the CO'InJJOsition of v from 
v, and vy. 

Horizontal component of Vo = Vo, Vo cos e, 
Vertical component of Vo Vo11 = Vo sin 0 . 

(3-7) 

.. L..Y/---Y'"'----, D ' 

c r, 
,.- B vx Vy ' I Vy 
.Y~ Sy=h 'Kx 

t ~~/ \v 
~~ \~ A vo,, EK: 

Vy \\v ,, 

~tiD 

_;jiE 
Vy 

\ 
\ 
\ 
\ 

F' v., 

\ 
\ 

Vy \ V 

\ 
(a) ' 

Fm. 3-6. Generalized projectile motion. 
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As before, v0, remains also the value of the horizontal component v, 
at all later points, including the six positions shown. (F refers to 
the state of affairs just before the projectile hits.) On the other 
hand, Vo11 at point A is subsequently diminished as the projectile rises 
against the opposing, dmvnward acceleration of gravity, until, at 
point C, v11 = 0. From then on, V 11 no longer points upward, but 
reverses and becomes larger and larger in the previously examined 
manner. So .far as this vertical component alone is concerned, its his
tory would have been exactly the same if v0, had been zero, i.e., if 
we had been thinking abont a stone thrown vertically upward at 
the edge of a cliff with that same initial value of Vo11 3-6 (b) J. 

The question now arises how to calculate the total aetual velocity 
v of the projeetile in Fig. 3-6(a) at some point B. We still have 

faith that at B, as elsewhere, v = Vv~ + v~ (and in the absence of 
faith an experiment would prove the point). Vx at B is still, in 
magnitude, equal to v0,, and therefore equal to v0 cos 8. But when 
we now turn to the vertical component, we find that its initial mag
nitude has been decreasing between points A and B through constant 
deceleration due to gravitational pull in a direction opposite to the 
motion. \Ve may regard l!v at B as a constant speed component !loy 

diminished by a contrary, growing component of mag·nitude gt, where 
t is the time needed to reach point B (see Fig. 3-7, "at B"). At 
point C, evidently 1111 = O, since there the term gt has become exactly 
as large as vo11 • Beyond that point we may become somewhat uncer
tain how to calculate Vv from Vo111 t, and g, and here we must have 
recourse to a geometric scheme. 

Consider Fig. 3-6(b ). Each arrow representing v11 at any one point 
may itself be thought of as the result of simple addition or subtrac
tion of t.he length of two other arrows, representing respectively the 
constant velocity Vo11 (upward), and the cumulative efl'ect of gravity, 
gt, downward (Fig. 3-7). But this is just a special case of a general 
scheme of additions of quantities such as displacement (for which 
we used it in Section 3-1) and 
velocities, the scheme due to 
Galileo which \Ye previously em
ployed to compose v from Vx and 
v11 : no matter whether two veloc
ities simultaneously at work on 
one body are active at right 
angles to each other (as before), 

(at B) (at E) 

FIG. 3-7. 
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or along the same line (as now while we consider only the vertical 
component), or make any other angle with each other, we can find 
the resulting total velocity by the so-called parallelogram method of 
construction. In this construction, the arrows representing the two 
velocity components are drawn to some scale (e.g., 1 em = 10ft/sec), 
placed on paper in correct relation end to end, the parallelogram is 
completed, and the diagonal is drawn which, pointing in the direction 
away from the meeting point of the component arrows, gives to the 
same previous scale the magnitude and direction of the resultant 
total velocity. 

In Fig. 3-8 several such hypothetical cases are shown, v being 
the resultant of two components Va and V0• The first of these exam
ples is familiar to us. The last is a kind of degenerate case of the 
one preceding; the two components lie in opposite directions along 
one line and the drawing of a clear parallelogram becomes practically 
impossible, although the result is obviously that shown. Similarly, 
if the angle between Va and Vb in the third sketch were to shrink to 
zero, the resultant, v, would grow to the plain numerical sum of the 
components. Quantities which permit such a graphic method of 
addition are called vectors; besides displacement and velocity we shall 
find many other important vector quantities, notably force. In each 
case the method for vector addition (that is, for finding the resultant 
of two separate components) is this parallelogram method, based on 
a simple superposition law. 

3-3 The general case of projectile motion. We shall soon have 
ample opportunity to make use of vector addition in other contexts, 
but for the moment it is enough to consider the scheme in Fig. 3-7 
as a restatement of the special case of vector addition shown in the 
last d.ravving of Fig. 3-8. Now a simple convention suggests itself 
which circumvents the unavoidably inaccurate and sommvhat messy 
scheme of drawing these arrows to scale to find the resultant in each 
case. If we agree to the convention to give 7Jositive values to quan
tities represented by an upright arrow, and negative values to those 
oppositely directed, then we can employ the simple equation 

&.
Va 

v 
foot. 
I 
I 
I 

FIG. 3-8. Graphical method for adding two velocity vectors. 
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Vy = Voy + gt (3-8) 

in its original form to compute Vu at any time t after the projectile 
motion starts. A glance at Fig. 3-7 will show qualitatively that this 
equation, together with that convention, assures the correct calcula
tion of the numerical values for v. 

Example 1. A projectile is shot from a gun tilted at 60° above the 
horizontal; the muzzle velocity Vo is 3000 ft/sec. (a) What is Vy after 20 sec 
of flight, (b) what is the total velocity v of the projectile after 20 sec of 
flight, (c) at what angle with the horizontal does it then travel? 

Solution: (a) Vu = Vou + gt, where Voy = Vo sin() = 2600 ft/sec (positive 
value); gt is numerically about 32 (ft/sec2) X 20 sec = 640 ft/sec, but rep
resenting always a "downward directed" quantity, it is by our convention 
to be used with a negative sign, that is, as ( -640) ft/sec. Therefore Vy = 

2600 ft/sec + ( -640) ft/sec = 1960 ft/sec. [The fact that our answer has 
a positive sign itself means that the velocity is still directed upward; this 
means we might be now at some position on the trajectory like point B in 

Fig. 3-6(a).] (b) To compute v by vv; + v;, and then the angle from 
tan 'Y = Vu/v., we now find Vx from Vx = Vox = Vo cos (), (Continue as 
exercise.) 

Example 2. How long will the above-mentioned projectile take to reach 
the highest point? The translation of this question depends on the realiza
tion that Vu = 0 at the top point of the trajectory, i.e., at point C in Fig. 
3-5(a). Then gt = -vou by Eq. (3-8), or (-32 X t) ft/sec = -2600 ft/sec, 
and consequently t = -2600/-32 sec='= 81 sec. (We enter at once our 
suspicion that for such conditions the physical realities of air friction un
doubtedly make our calculations quite academic.) 

Example 3. What is Vu, the vertical component of velocity of this pro
jectile, after 162 seconds? 

Solution: From Eq. (3-8) we find Vu = 2600 ft/sec + ( -32 X 162) ft/sec 
='= 2600 ft/sec - 5200 ft/sec = -2600 ft/sec (negative = downward). In 
short, after a time as long again as it took to reach the top of the trajectory, 
the velocity component downward is equal numerically but oppositely di
rected to the initial vertical component. This is pictured at pointE, Fig. 3-6. 

The last two examples make it clear that it might be wise to assign 
the minus sign permanently to the value for g, to write g = -32 
ft/sec2 once and for all, and so banish the temptation to change the 
plus sign in Eq. (3-8) at any time. We shall do this from now on. 

But you may have wondered why we did not adopt these con
ventions before, in Section 3-1, or, since we failed to do so at that 
time, whether conclusions obtained there are not now erroneous. 
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The answer is that our convention of + and signs is arbitrary 
and could be turned around completely, as long as vve somehmv dis
tinguish in our numerical work between "up" and 11down" compo
nents. In Section 3-1, where Vo11 was kept jealously at zero value, 
only components of one variety, namely 11downward/' appeared in 
any problem; hence there was no need to introduce a differentiating 
sign convention then. 

vVith this treatment of one type of vector components as a back
ground, we need perhaps only point out that the same sign conven
tion, if applied to diszJlaconent components, will allow us to solve in 
a similar manner all problems involving the height of a trajectory, 
the range, etc. After all, displacements also are vectors in the sense 
that they can be represented by arrows 
and can be added (composed) or 
resolved according to the same simple 
parallelogram scheme which we used 
for velocities. For example, our use of 
the Pythagorean theorem in Eq. (3-3) 

FIG. 3-9. 

shows this vector aspect of displacements clearly. Another example 
might be the graphical derivation of 811 at, say, point B in Fig. 3-6, 
as shown in Fig. 3-9. 

Therefore 811 vl'ill also attain positive values if represented by an 
arrow pointing upward, when the displacement is to a point 
above the level of Telease of the projectile; and 8 11 will assume negative 
values for displacements measured in the other direction. Then we 
can use in their original form the pertinent equations involving dis
placement, such as 

(3-9) 

provided again that we substitute in all our calculations for g the 
value 980 cm/sec2 or 32.2 ft/sec2• 

Example 4. The projectile mentioned in the previous examples falls into 
a valley 1000 ft below the level of the gun. How long was it in the air, and 
what was the range? Translating, we note that the old data are Vo = 3000 
ft/sec at 60°, :. VOt1 = 2600 ft/sec, Vox= 1500 ft/sec; g = -32 ft/sec2

• To 
tllis we add su = 1000 ft (a negative sign to indicate that the vertical dis-
placement is to a point below the level of release), t ? s, = ? 

Equation (3-9) can be written: ~gt2 + Voyt - su 0, a quadratic equa
tion easily solved for t: 
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So far, we have not called in our sign convention. Now we may substitute 
our values with their proper signs to obtain a numerical answer. (Do this.*) 
Having calculated t, we can solve for s~, since it is still true that sx = v0,t. 

To S11.1JZ1Jutrize, we nmv feel justified in using· the followine; equa
tions of motion in projectile problems, where all symbols have their 
diseussed meaning and the new convention is used to substitute 
numerical values with correct 

= (!lu,, + Vu)t 
Sy 2 (l) Vox Vx Vo cos (} (VI) 

Sy = Vo11t + ~· gt2 (II) Vou Vo sin 0 (VII) 

'1! 11 = Voy + gt (III) 
v (VIII:. 

v; = v~v + 2 gs11 (IV) 

Sx = t'oxl = Vxl (V) s = tan (3 ~l (IX) 
s, 

Co·nvent?:ons rcganling sign: 

Vector components in the direction are given values. 
Vector components in the y direetion are given values. 
Consequently, s11 has values if the displacement is above the 

level of release; s11 has values if the displacement is below 
the level of release; and Voy and v11 have + values while the 
corresponding motion is upward, whereas Vou and v11 have 
values while the corresponding motion is downward. 

The value of g is at all times taken to be -980 cm/sec2 or 
-32.2 ft/sec2• 

This set is not quite as formidable as it might seem at first glance. 
'Ve recall that Eq. (I) is really just a definition of average velocity 
for uniformly accelerated motion, i.e., v = (voy 1111)/2 = sjt. Equa
tion (II) is, on the other hand, an experimental law (from free fall 
experiments), and therefore, so to speak, on a higher plane. Equa
tions (III) and (IV) can be derived from (I) and (II). Equation (V) 
is a second experimental law (i.e., the horizontal component of motion 
Vx is unaccelerated). The remaining Eqs. (VI)-(IX) simply refer to 
the mathematical properties of vectors: Eq. (VI) includes the rule 

* At such times it is well to recall that of two possible solutions of such 
quadratics one may be physieally irrelevant or even absurd. (The latter 
applies if t comes out negative or if the quantity under the squal'e root is 
negative.) What does this reveal about. the role of mathematics in physical 
science? 
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defining how to find the x component of vector vo, while Eo. WII) 
provides for they component. Equations (VIII) and (IX) give the 
rule for vector addition (magnitude and direction of resultant, first 
for the total actual velocity, second for the total actual displacement). 
Finally, the sign conventions, which quickly become second nature 
in use, reflect only a commonsensical way of differentiating between 
addition and subtraction of quantities. 

vVhen a practicing physicist has to solve projectile problems, he 
does not really need to have before him all these defining equations 
and the conventions. He understands these tacitly; what he will 
regard as important and essential about ideal projectile motion are 
Eqs. (II) and (IV), modified as follows: 

Sy = (v0 sin 8)t + ! gt2 ; Sx = (vo cos 8)t. 

He will ordinarily combine these equations by eliminating t between 
them (i.e., in the left equation, replacing t by sx/vo cos 8), thus ob
taining 

Sy 

/ • 
Fm. 3-10. 

Sy = tan 8 Sx + !g( 2 s; 
2 

e)· (3-10) 
v0 cos 

\ 

\ 
This curve represents 

Eq. (3-10). 

This last equation he will con
sider to be the equation of the 
trajectory in vacuo, and he can 
attack most problems with this 
formula (see Fig. 3-10). For us 
it must suffice to realize that the 
whole truth about projectile mo
tion, through mathematics, can 
be so economically expressed and 
so conveniently handled. Also, 
we should realize that Eq. (3-10) 
is of the following form: 

Sv = (a constant) X Sx + (another constant) X s;. 
This once more implies that the trajectory is ]Jarabolic (no longer 
simply the lower right half of the parabola in Fig. 3-L1, which applied 
where 8 = 0, whence tan 8 = 0 and Sy = (constant) X s; only). 

PROBLEM 3-2. The two curves of Fig. 3-11 differ only in the placement 
of the origin of the coordinates, so that in (a) 8 = 0, in (b) 8 = 60°. Copy 
the two parabolas on a sheet of graph paper and show by computation for 
several points that the equation is for (a) Y = (a constant)· X2, for (b) 
Y = (a constant)· X + (another constant)· X2• Once more we see that a 
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(a) (b) 

Ji'IG. 3-11. 

knowledge of parabolas is all we should really need to solve practical pro
jectile problems. Nevertheless, at our level it will prove easier for us if we 
continue to solve our problems by means of Eqs. (I)-(IX) rather than, say, 
by Eq. (3-10) plus the theory of parabolas. 

3-4 Applications of the law of projectile motion. Let us review 
·what "\Ye have done. First, starting from some experimental observa
tions, we have found the separate equations for the horizontal and 
the vertical components of a general projectile motion. In particu
lar, the horizontal component is found to be unaccelerated, and the 
vertical one obeys the laws of motion of uniformly accelerated ob
jects. Secondly, the total actual motion (displacement s and speed 
v) is obtained in direction and magnitude by a vector addition of 
the components, following an empirically justified procedure of add
ing by the parallelogram method. Now comes the reward. vVe see 
what a wide variety of projectile problems we can solve with this 
set of equations (which we may regard as the algebraic expression of 
the general law of ptojectile motion). 

Exam1Jle 1. A gun pointed at an angle e above the horizon shoots 
a projectile with muzzle velocity v0• \Vhat is the time t needed for 
the projectile to return to level ground? That is, given v0, 0, and, 
of course, g, find t if Bu = 0 (Fig. 3-12). 

Solution: Since 

811 Vo11t + ! gt2, (II) 

0 = (vo sin O)t + i gt2, 

and 
sin 0 

s,. 
FIG. 3-12. 

g 

Since g takes on a negative value, t will come out positive, as it 
surely must. 
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Example 2. 
height reached? 

In the previous example, what is the maximum 
That is, given Vo, e, g, find Sy ( == h) if Vy = 0. 

Soltdion: By Eq. (IV), 0 = (v0 sin 8) 2 + 2 gsu, 

- (v0 sin 8) 2 

2g 0 
Sy (""' h) and 

Again su is positive, since g has a negative value. 

Example 3. In the first example, what is the range, i.e., if vo, e, 
and g are given, and su = 0, what is Sx? 

Soltdion: Sx = Voxt = (vo cos e)t. Hmvever, since t is not explic
itly lmmvn, it must first be calculated, and this can be done as shown 
in Exan1ple 1. (This may be called a two-step problem.) By direct 
substitution, it follows that 

s, = 
- vg 2 cos e sin e 

g 

-1g sin (28) 
g 

It should be emphasized again that these results would hold strictly 
only for projectiles moving in a vacuum above a flat earth. The 
actual effects of air resistance alone may decrease the effective range 
by 50%. Evidently, for practical applications, 1ve should have to 
investigate how such effects modify these results through theoretical 
and empirical corrections. 

3-5 Galileo's conclusions. Galileo himself carried his work to 
the point where he computed fine tables of ranges and heights of 
trajectories over level ground for different angles e. These calcula
tions proved that for a given initial velocity the range was a maximum 
if e = 45°, as we can ascertain by inspection of the general equation 
sx = [ -u~ (sin 28)]/g, for sin (28) takes on its maximum value, 1, 
if e = 45°. Galileo also used this result to show that sx for a given 
type of projectile is equally large for any two values of e differing 
from 45° by an equal amount in each direction (e.g., 52° and 38°). 
Convince yourself of this unexpected fact by substitution, if no sim
pler way suggests itself. Galileo very penetratingly remarks at this 
point: 

"The force of rigorous demonstrations such as occur only by 
use of mathematics fills me with wonder and delight. From ac
counts given by gunners, I was already aware of the fact that in 
the use of cannon and mortars, the maximum range, that is, the 
one in ·which the shot goes farthest, is obtained when the elevation 
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is 45° ... ; but to understand why this happens far outweighs 
the mere information obtained by the testimony of others or even 
by repeated experiment . . . The knowledge of a single effect 
apprehended through its cause opens the mind to understand and 
ascertain other facts without need of recourse to experiment, pre
cisely as in the present case, where, having won by demonstration 
the certainty that the maximum range occurs when the elevation 
[OJ is 45°, the Author [Galileo] demonstrates what has perhaps 
never been observed in practice, namely, that for elevations which 
exceed or fall short of <15° by equal amounts, the ranges are 
equal ... " 

Note the pleasure which he finds in discovering a mathematical 
law, and that he regards it as the way "to understand why" projectiles 
move as they a.re observed to do. Note also especially the phrase 
"without need of recourse to experiment"; Galileo, traditionally re
garded as the patron saint of experimental science, clearly warns us 
that the continual experimental verification of a prediction from a 
law is unnecessary once the law is sufficiently well established. After 
the initial mandatory doubts are satisfied, one must sufficiently be
lieve in the law in order to obtain any benefit from it at all. 

A second important conclusion from the work on projectiles may 
seem almost trivial at first glance. In support of the Copernican 
thesis that the earth moves about its a::ris and around the sun, Galileo 
offered an answer to critics who arg-ued that if the earth moved, a 
stone dropped from a tmyer would be left behind while falling through 
the air, and consequently would not land directly at the foot of the 
tower as observed, but much beyond. Galilco assumes that during 
the short time of fall, the earth, and the top and the foot of the tower 
may be thought to move forward equally far with uniform velocity. 
If, then, the whole tower moves with the same speed Vox, the dropped 
stone must fall along the tower, because it will retain this "initial" 
horizontal component of speed, as truly as a parcel dropped from a 
moving plane lands below the plane or, in Galileo's analogy, as an 
object falling from the mast of a moving ship lands at the foot of the 
mast. From this and equivalent observations concerning the other 
laws of mechanics has been developed a most valuable generalization, 
usually called the Galilean Relativity Princi1Jle: Any mechanical ex
periment, such as on the fall of bodies, done in a stationary "labora
tory" (e.g., on a stationary ship) -will come out precisely the same 
way when repeated in a second 1'laboratory" (say on a moving ship) 



52 PROJECTILE MOTION [CHAP, 3 

as long as the second place of experimentation moves with constant 
velocity as measured from the first. 

To express this more elegantly, let us use the words "coordinate 
system" instead of "laboratory," since all that counts in the descrip
tion of experiments is the system of reference used for measurements. 
Some corner of the rectangular laboratory table might be the origin 
for all our measurements of distance, and the x, y, and z directions 
may correspond to the directions of the three edges. Then we may 
restate the Galilean Relativity Principle: "All laws of mechanics 
observed in one coordinate system are equally valid in any other 
coordinate system moving with a constant velocity relative to the 
first." If you drop a suitcase in a compartment in a train, be it at 
rest or speeding at 30 mi/hr or at 60 mi/hr across level terrain, the 
case will always hit the floor below its point of release, and will fall 
downwards with the usual acceleration as measured in the car. Con
sequently, from the motion of a projectile in a car you cannot decide 
whether the car itself is moving. If the Principle is true in its gen
eral form, it follows that no mechanical experiment made on our earth 
can decide such intriguing questions as whether the solar system as 
a whole proceeds with some steady motion through the space about us. 

3-6 Summary. Evidently, this has carried us far from the start
ing point of our discussion. Recall that we started from the simple 
case of projectile motion in a plane, 8 being 0° at first. Then we 
deduced the superposition principles for velocities, learned how to 
add vector components by the simple parallelogram method, and 
extended our treatment to the general case, obtaining the laws of 
projectile motion without any restrictions on the initial direction of 
motion. Finally we heard that even more general principles were 
induced from these laws. vV e also noted in passing the power and 
meaning of the mathematical formulation of physical events, and the 
multifold predictions flowing from such mathematical laws-whether 
theoretical, as the determination of a maximum range for 8 = 45°, or 
practical, as the construction of gunnery tables. 

With these examples of the development and power of physical 
law in mind, we shall later return to a discussion of "scientific meth
vds." But we shall encounter influences of Galileo's work from time 
to time throughout the rest of this study, as one might find an ances
tral trait running through generations of one family. 

For the moment, an urgent task remains: In this section, Part A, 
we have studied motions of various sorts, but motion apart from the 
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forces that cause them. To kinematics, we must now add dynamics. 
These are as t;vo sides of a coin; without both, we cannot purchase 
the full understanding of any mechanical phenomenon. 

Additional Problems 

PROBLEM 3-3. What is meant by saying that the paths of projectiles 
in vacuo are parabolic? When we find by experiment that the paths are 
parabolic, what help is that in solving projectile problems? Why should 
trajectories follow parabolic paths instead of perhaps that shown 
in Fig. 2-1? 

PRoBLE:\I 3-4. A stone is thrown vertically upwards with an 
initial speed Vov 100 ft/sec (Fig. 3-13). Find (at the end of 
the 1st, 3rd, and 7th second), (a) the displacement Bv of the stone, 
(b) the instantaneous velocity. Use your data to plot a v ys, t 
graph (on graph paper) and find from it (graphically), (c) when 
the stone will have a speed of 200ft/sec (numerically), (d) what FIG. 3-13 
the acceleration is at the instant that the stone has reached its 
topmost position aud just begins to turn downwards. 

PRoBLEM 3-5. How long will the stone in Problem 3-4 take to reach again 
the level of release? Obtain this result first from your graph for Problem 3-4, 
then check it by independent direct calculation. 

PROBLEM 3-6. A gun fires a shell a.t a muzzle velocity of aooo ft/see 
and at an angle of 30° above the horizon. How long will it take to return 
to earth, how high will the projectile rise, and what is its range on level 
ground'? (Neglect air friction.) 

PIWBLEM B-7. A baseball is fired by a pitcher horizontaJly from a ver
tical height of 6 ft above home plate. It reaches the batter after 0.5 sec. 
Will the ball be called a strike if the batter does not swing? 

PROBLEl\I 3-8. The famous gun known as Big Bertha in W oriel War I 
had a maximum range on flat territory of about 75 miles. vVhat would 
have been the muzzle velocity of the projectile if it had exhibited such a 
range in vacuo? (The actual muzzle velocity under ordinary circumstances 
would he somewhat la.rger.) 

PnonLEM 3-9. A baseball is thrown with v0 50 ft/sec at an eleva
tion (0) of 60°. Show that after 2 sec it has risen 23 ft, has traveled 50 ft 
horizontally, and moves there at an angle of about -39° (i.e., 39° below 
the horizontal). 

PuonLE~! 3-10. iYiodern eosmic ray research sometimes employs rockets 
to sample automatically the radiation at high altitudes. For simple calcu
lation's sake, consider that a self-propelled rocket constantly increases its 
speed on a straight vertical path so that at an altitude of 18 miles, when 
the fuel is exhausted, it has attained a speed of 5000 ft/sec. At this 
point the stabilizers automatically turn the rocket at an a.ngle of 60°, after 
which the missile continues as an ordinary projectile. What time interval (in 
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seconds) is available for mea11urements in the relatively air-free region above 
18 miles? What is the total time from the firing of the rocket to the instant 
it hits the ground? What assumptions have you introduced? 

PROBLEM 3-11. A hunter aims his gun barrel directly at a monkey in a 
distant palm tree. Where will the bullet go? If the animal, startled by 
the flash, drops out of the branches at the very instant of firing, will it then 
be hit by the bullet? Explain. \Vould this last answer hold if the accelera
tion of gravity were not 32 ft/sec2 but only t as great, as on the moon? 

PROBLEM 3-12. For each of the following cases sketch two graphs, one 
of total displacement vs. time elapsed, the other of velocity vs. time elapsed. 
Carefully use the convention concerning positive and negative values. (a) A 
parachutist falls from a plane, after a while opens the 'chute, and floats 
to the ground. (b) A marble drops from your hand and bounces three times 
before coming to rest on the floor. (c) A shell is fired at 60° elevation and 
falls into a deep valley. 

PROBLEM 3-13. Read through the Fourth Day (Motion of Projectiles) 
in the full edition of Galileo's Dialogues Concerning Two New Sciences, and 
on this basis briefly discuss the following: (a) Galileo's examination of the 
role of air resistance in projectile motion. (b) Galileo's use of experiments 
to further his argument. (c) Galileo's interest in practical applications of 
his work. 

Further Reading 

Galileo Galilei, op. cit. (Ch. 2), Fourth Day. Excerpts in W. F. Magie, 
op. cit., pp. 19-22; also J. W. Knedler, op. cit., pp. 151-167. 
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